Track Categories

The track category is the heading under which your abstract will be reviewed and later published in the conference printed matters if accepted. During the submission process, you will be asked to select one track category for your abstract.

Graphene is a disruptive innovation; one that could open up new markets and even supplants existing technologies or materials. It is when graphene is utilized both to improve a current material and in a transformational limit that its actual potential can be figured it out.The immense number of products processes and industries for which graphene could make a noteworthy effect all stems from its astounding properties. No other material has the broadness of superlatives that graphene brags, making it perfect for endless applications.Transport, medication, gadgets, energy, defence, desalination; the scope of businesses where graphene inquire about is having an effect is significant and this is just the beginning.These are just the initial steps. The capability of graphene is restricted distinctly by our creative mind.


  • Track 1-1Biomedical
  • Track 1-2Electronics
  • Track 1-3Energy
  • Track 1-4Graphene membranes
  • Track 1-5Sensors

Carbon nanotubes (CNTs) and graphene are allotropes of carbon which have fascinating electrical, mechanical and other physical properties. Graphene is a two-dimensional material, on a very basic level of a single layer graphite, with carbon particles arranged in a hexagonal, honeycomb framework. Carbon nanotubes are barrel shaped and empty structures, essentially, a sheet of graphene folded into a chamber. The time when they are rolled (their "chirality"), and their separation over, impact their properties. CNTs can be single-walled (SWCNTs or SWNTs) or it can be multi-walled (MWCNTs or MWNTs)


  • Track 2-1Multi-walled CNTs
  • Track 2-2Chemical modification
  • Track 2-3Single-walled CNTs
  • Track 2-4Extreme carbon nanotubes

Graphene's comparability with various biomedical applications, like drug delivery, cancer therapies and biosensing, is broadly and vigorously asked about. The material's extraordinary properties, like an enormous surface region, incredible biocompatibility and chemical stability, think of it that it deserving of intensive examination and high expectations. Artificial inserts are therapeutic staple and graphene could accept a noteworthy activity later on of these contraptions. Graphene's biocompatibility, joined with its mechanical quality, is significant for various composite bio-materials and its electrical conductivity can be used for organs that require such attributes, like nerve tissues and spinal parts. Bio-sensing is a creating field, with various restorative applications that ring a bell. Various streets are researched hence, with graphene exhibiting remarkable execution in distinguishing sustenance harms, characteristic tainting, specific germs and microorganisms.


  • Track 3-1Bionanotech Applications of graphene
  • Track 3-2Graphene Expected to Revolutionize Neurosurgery
  • Track 3-3Drug delivery
  • Track 3-4Graphene as Excellent Material for Brain Interfaces

Graphite, Graphene, and Their Polymer Nanocomposites present an array of rising assessment floats in graphene-based polymer nanocomposites (GPNC). Worldwide researchers from a couple of controls share their expertise about graphene, its properties and the conduct of graphene-based composites. Maybe the principle conveyed monograph of its kind. This hypothesis gives an extensive portrayal of graphite, graphene, and their PNCs, including the essential material science and chemistry and related applications. Beginning with a preface to normal and produced graphite, the precursors to graphene, the substance depicts their properties, depiction strategies, and unquestionable business applications.

  • Track 4-1Graphene-based polymer nanocomposites (GPNC)
  • Track 4-2Methods of GPNC
  • Track 4-3Polymer characterization

Recent experiment and Present day advances in the field of nanotechnologies have maintained the difference in interdisciplinary research and various scientists have some ability in collecting new sorts of nanomaterials that hold ensure for various applications, for instance, medicinal determination and treatment, ecological observing, vitality creation and capacity, sub-nuclear enlisting and generously more. Graphene, an increasingly significant nano-sized material detailed in 2004, has created to wind up an invigorating two-dimensional material with unquestionable attributes that has pulled incredible enthusiasm for the fields of physical science, Chemical science and the field of biology. Recent experiment and Present day advances in the field of nanotechnologies have maintained the difference in interdisciplinary research.

  • Track 5-1Chemical and biological applications of graphene
  • Track 5-2Graphene-enhanced cell differentiation and growth

Nanocarbons contemplates the control of size as well as the control of structure and surface at the nanometer scale. It considers nanosized carbons (carbon nanotubes and nanofibers; graphene-based materials; nanodiamonds) and nanostructured permeable carbons (carbon gels and carbons got by templating). Nanocarbons offer numerous preferences over the customary carbon materials. This outcomes from increasingly satisfactory textural properties, yet additionally from new impacts got from ebb and flow,  confinement, heteroatom doping, and improved electron move. Carbon-supported metal impetuses are for the most part applied in the fine synthetic and pharmaceutical enterprises. Enacted carbons and carbon blacks are the materials right now utilized in these applications.

  • Track 6-1Batteries
  • Track 6-2CNTs
  • Track 6-3Energy conversion
  • Track 6-4Energy storage
  • Track 6-5Nanocarbons
  • Track 6-6Supercapacitors

Graphene is at the focal point of a consistently developing examination exertion because of its remarkable properties, intriguing for both principal science and applications. A key necessity for applications is the improvement of modern scale, dependable, cheap creation forms. Graphene is only the first of another class of two dimensional materials, got from layered bulk crystals. The greater part of the methodologies utilized for graphene can be reached out to these crystals, quickening their excursion towards applications. As the quantity of business uses of graphene and other 2D materials continues extending, creating and conveying two-dimensional materials of high gauge is quick turning into a critical challenge. Starting late, there have been various frameworks made to incorporate graphene, going past the 'Scotch tape' method upheld by Andre Geim and Konstantin Novoselov.

  • Track 7-1Micromechanical cleavage
  • Track 7-2Chemical vapour deposition(CVD)
  • Track 7-3Molecular Beam epitaxy
  • Track 7-4Photoexfoliation

The electronic and optical properties of the most well-known III–V and II–VI parallel semiconductor mixes and their compounds are needed to be discussed. This thought of the pseudomorphic heterostructures containing concentrated on the layers of these materials is shown and the key impacts of spatial control are considered, concentrating on two-dimensional structures (quantum wells) and zero-dimensional structures (quantum spots). In the two cases the electron spectra and optical advances are characterized in the structure of a multiband envelope work guess. Excitonic fine structure is spoken to both in quantum wells and quantum spots as far as the balance decrease prompted by the bearer keeping potential. The connections exhibited in the section permit one to foresee the vitality and quality of optical advances, contingent upon sizes and states of semiconductor nanostructures; they can be utilized to legitimize the decision of specific nanostructures for the reasons for plasmonics.


  • Track 8-1Applications of semiconductor nanostructures
  • Track 8-2Quantum wells
  • Track 8-3Quantum dots
  • Track 8-4Envelope function approximation
  • Track 8-5Excitonic fine structure

Alongside a colossal enthusiasm for nanomaterials, 2D nanomaterials hold extraordinary guarantee for a wide scope of utilizations in the fields of science, consolidated issue, material science, and designing. These 2D nanomaterials should keep on moving numerous curiosity‐driven disclosures and applications in the fields of supercapacitors, batteries, sensors, catalysis, and electromagnetic impedance (EMI) protecting. As of late, 2D nanomaterials are risen as the most encouraging materials for applications in EMI protecting. Up until now, few 2D nanomaterials including graphene, change metal carbides, and molybdenum disulfide are tried for application in EMI protecting. In this, ongoing advancement in 2D nanomaterials for high‐performance EMI protecting is checked on. The advancement secured shows extraordinary guarantee for the innovative improvement of cutting edge EMI protecting materials for present day versatile and other progressed electronic gadget.


  • Track 9-1Electrical conductivity
  • Track 9-2Electromagnetic interference (EMI) shielding
  • Track 9-32D nanomaterials

As nanotechnology keeps on developing as the scientific beacon of future, carbon nanotubes (CNTs) are no exemption. Carbon nanotubes are multiple times more grounded than steel however at one-6th the weight. They additionally lead warmth and power superior to copper. Bridled appropriately, the utilizations of CNTs are changing material science and innovation. Presently half of lithium batteries joined carbon nanofibers, which are wires spun from CNTs. Carbon nanotubes are in any event, being utilized to improve outdoor supplies like tennis rackets, baseball bats, and bike outlines. Carbon nanotubes are in any event, rising in the medical field. Scientists have made a biosensor that can analyze yeast infections faster than the present strategy. Another potential medicinal utilization of CNTs is in assisting with focusing on tumors.


  • Track 10-1Carbon Nanotubes and Energy
  • Track 10-2Carbon Nanotubes In Healthcare
  • Track 10-3Carbon Nanotubes and the Environment
  • Track 10-4Carbon Nanotubes Effecting Materials
  • Track 10-5Carbon Nanotubes and Electronics

Graphene will discover applications in electronics as well as in bioengineering, composite materials,  energy technology and nanotechnology. As indicated by present estimations, it won't be until 2030 when we will start to see graphene broadly utilized in organic applications as it is basic for us to comprehend its biocompatibility. It is accepted that graphene will be utilized on a business scale in the field of optoelectronics particularly LCDs, touch screens and organic light emitting diodes (OLEDs). Graphene is totally transparent material and can transmit up to 97.7% of occurrence light. It likewise has high conductivity, thus would be appropriate for cell phones, tablet, desktop computers and TVs. Graphene permits water to go through, anyway it is practically impenetrable to fluids and gases. Graphene can be utilized as a ultrafiltration medium to carry on as a hindrance between two substances. Graphene is valuable since it is only one single particle thick and can be created as a boundary that estimates weight and strain electronically between two substances


  • Track 11-1Biological Engineering
  • Track 11-2Optical Electronics
  • Track 11-3Ultrafiltration
  • Track 11-4Composite Materials
  • Track 11-5Photovoltaic Cells

Researchers have been attempting to create energy storage solutions, for example, batteries and capacitors that can stay aware of the current rate of electronic segment development for various years. Tragically, the circumstance we are in now is that while we can store a lot of energy in particular sorts of batteries, those batteries are very large, very heavy, and charge and discharge their vitality moderately gradually. Capacitors, then again, can be charged and discharge energy rapidly, yet can hold considerably less energy than a battery. Graphene application improvements however have lead to new conceivable outcomes for energy storage, with high charge and release rates, which can be made economically.


  • Track 12-1Lithium–sulfur batteries and lithium–air batteries
  • Track 12-23D-printed graphene batteries
  • Track 12-3Electrodes for sodium-ion batteries
  • Track 12-4Redox flow battery

Carbon is one of the most plentiful components found in our temperament, and its blends have a wide nearness on the Earth. In that capacity, it remains as one of the most generally perceived resource materials to shape distinctive nanostructured composites. The carbon-based mixes structure the premise of all known life in nature. Present day times observer the improvement of techniques to use the allotropes of carbon for groupings of prerequisites. Inferable from the versatile holding limit of carbon, it has intriguing properties of reacting with various segments, right now the carbon-based blends to find a broad assortment of employments in standard human life. The stream investigates examples of graphene advancement incorporate sketching out and assembling such mediums prepared for controlling electromagnetic waves. The conceivable outcomes of graphene-overhauled advancement expedite noteworthy effects the current nanotech-based R&D world.


  • Track 13-1Device uses graphene plasmons to convert mid-infrared light to electrical signals
  • Track 13-2Graphene future electronics superfast
  • Track 13-3New Way to 3D Print Graphene Objects

Nanometre dimensional C60 and related aluminum refining are offering approach to progressively different applications requiring high-surface-zone carbon i.e., capacitor, power modules, metal/air batteries, and high-vitality anodes. What's more, the minimal effort of carbon comparative with other electronic conductors is a significant favorable position for it’s across the board use in anodes, especially in electrochemical frameworks that must rival existing advances. Anodes are especially appealing for electrochemistry Because of its uncommon synthetic steadiness; jewel is a point of view terminal material to be utilized in electrochemistry and electrochemical building.


  • Track 14-1Electrochemical surface of Diamond
  • Track 14-2Carbon Materials and Electrochemical Energy
  • Track 14-3Nano Carbon materials for the electrochemical storage

There are various sorts of 'graphene' ascending out of research focuses towards business uses, made by methods for a collection of procedures and yielding different properties and obvious worth. A key issue for those, needing to make graphene from mined graphite, is understanding the complexities between characteristic graphite-course graphene and falsely made material. In other hand Producing of graphene in mass is modern abuse of this unprecedented two-dimensional material. In light of that, Graphene Flagship researchers have developed a novel minor departure from the concoction fume affidavit process which yields amazing material in a versatile manner. This improvement ought to in a general sense limit the execution gap among manufactured and regular graphene

  • Track 15-1Different types of graphene
  • Track 15-2CVD graphene

There are various sorts of 'graphene' ascending out of research focuses towards business uses, made by methods for a collection of procedures and yielding different properties and obvious worth. A key issue for those, needing to make graphene from mined graphite, is understanding the complexities between characteristic graphite-course graphene and falsely made material. In other hand Producing of graphene in mass is modern abuse of this unprecedented two-dimensional material. In light of that, Graphene Flagship researchers have developed a novel minor departure from the concoction fume affidavit process which yields amazing material in a versatile manner. This improvement ought to in a general sense limit the execution gap among manufactured and regular graphene.


  • Track 16-1CVD process
  • Track 16-2Fundamental process in the creation of CVD graphene
  • Track 16-3Problems associated with the creation of CVD Graphene
  • Track 16-4Current and potential solutions

With the expanding of the range of graphene-based materials and procedures, as of late started endeavors to institutionalize the meaning of various sorts of graphene will positively assist speed with increasing the commercialization of graphene. The creators presume that in spite of the fact that commercialization of a novel material can on normal take as long as 20 years, graphene is on a decent track to beat that cutoff time. The business is very much aware of the difficulties and openings lying ahead in the years to come and is prepared to manage them.


The present graphene is conventionally made using mechanical or warm shedding, concoction fume statement (CVD), and epitaxial advancement. A champion among the best techniques for integrated graphene on a broad scale could be by the compound decrease of graphene oxide. Graphite is a 3-dimensional carbon-based material made up of countless layers of graphene. By the oxidation of graphite using solid oxidizing operator, oxygenated functionalities are displayed in the graphite structure which develops the layer parcel just as makes the material hydrophilic (suggesting that they can be scattered in water). This property empowers the graphite oxide to be shed in water utilizing sonication, finally making single or few-layer graphene, known as graphene oxide (GO). Functionalization of graphene oxide can change graphene oxide's properties. The consequent misleadingly changed graphenes could then end up being generously progressively adaptable for a lot of usages.


  • Track 18-1Graphene oxide powder
  • Track 18-2Applications of graphene oxide
  • Track 18-3Graphene oxide paste, non-exfoliated
  • Track 18-4Graphene oxide sheets

3D printing (or included substance manufacturing) insinuates a methodology where a 3D printer is used for stacking layers of material under PC control, following a 3D show (or other electronic data source), realizing a printed three-dimensional inquiry. Various applications for 3D printing join layout discernment and prototyping, metal tossing, building, preparing, social protection, energy and that is just a hint of something larger. As 3D printing development continues progressing and make, authorities gather possible biotechnological uses like bio-printing and PC helped tissue planning and furthermore retail amassing of specially completed outcomes which may change the substance of exchange.


 Graphene, 2D atomic layer of sp2 carbon, has pulled in a ton of eagerness for use in solar cells, LEDs, electronic skin, touchscreens, essentialness storing devices, and microelectronics. This is a result of incredible properties of graphene, for instance, a high theoretical surface locale, electrical conductivity, and mechanical quality. The fundamental structure of graphene is similarly manipulatable, considering the plan of a considerably more unprecedented material, porous graphene. Porous graphene structures can be arranged as microporous, mesoporous, or macroporous depending upon the pore measure, all with their own exceptional central focuses .These characteristics of graphene, which may be the best approach to essentially improving a broad assortment of employments in vitality stockpiling systems.

  • Track 20-1Lithium-ion batteries
  • Track 20-2Porous graphene
  • Track 20-3Supercapacitors